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Quantifying parameter uncertainty and assessing the skill
of exponential dispersion rainfall simulation models†
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ABSTRACT: The exponential dispersion model (EDM) has been demonstrated as an effective tool for quantifying rainfall
dynamics across monthly time scales by simultaneously modelling discrete and continuous variables in a single probability
density function. Recent applications of the EDM have included development and implementation of statistical software
packages for automatically conditioning model parameters on historical time series data. Here, we advance the application
of the EDM through an analysis of rainfall records in the North American Laurentian Great Lakes by implementing
the EDM in a Bayesian Markov chain Monte Carlo (MCMC) framework which explicitly acknowledges historic rainfall
variability and reflects that variability through uncertainty and correlation in model parameters and simulated rainfall
metrics. We find, through a novel probabilistic assessment of skill, that the EDM reproduces the magnitude, variability,
and occurrence of daily rainfall, but does not fully capture temporal autocorrelation on a daily time scale. These findings
have significant implications for the extent to which the EDM can serve as a tool for supporting regional climate assessments,
for downscaling regional climate scenarios into local-scale rainfall time series simulations, and for assessing trends in the
historical climate record. Published in 2012 by John Wiley & Sons Ltd.
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1. Introduction

Stochastic rainfall models have evolved through numer-
ous forms ranging from paired exponential density func-
tions representing dry and wet periods of an alternating
renewal process (Gabriel and Neumann, 1962; Green,
1964), to Poisson cluster models, hidden Markov models,
and pulse-based models (including Bartlett–Lewis and
Neyman–Scott rectangular pulse models, as described
by Velghe et al., 1994; Cowpertwait, 1994; Cowpert-
wait, 1995; Onof and Wheater, 1993; Onof and Wheater,
1994). While the range of historical applications for
these models is broad (Stern and Coe, 1984), there is
an increasing recognition of their suitability for resolving
spatial and temporal scale discrepancies between ‘output’
(such as precipitation and temperature dynamics) from
general circulation and regional climate models (GCMs
and RCMs, for details see Lofgren et al., 2002; Holman
et al., 2012) and the input required by decision-support,
process-based models (the Great Lakes Advanced Hydro-
logic Prediction System, described in Gronewold et al.,
2011a, is one example). The spatial extent and temporal
resolution of RCM simulations, however, rarely corre-
sponds directly to the input requirements of these regional

∗ Correspondence to: A. D. Gronewold, NOAA, Great Lakes
Environmental Research Laboratory, Ann Arbor, MI, USA.
E-mail: drew.gronewold@noaa.gov
† This article is a US Government work and is in the public domain in
the USA.

and local-scale models, additional examples of which
include hydrological models (Beven, 2001; Wagener and
Wheater, 2006), terrestrial pollutant fate and transport
models (Ferguson et al., 2003), and water quality models
(Reckhow, 1999; Grant et al., 2001), which often run at
an hourly or daily time step over a specific watershed or
subbasin (for further discussion, see Bates et al., 1998;
Chapman, 1998; Fowler et al., 2007; Burton et al., 2008;
Timbal et al., 2009).

Burton et al. (2008) and Chapman (1998) note that
despite advances in stochastic rainfall simulation mod-
els, including improvements in model performance, there
is a need for efficient, robust model calibration routines
that explicitly acknowledge parameter uncertainty, corre-
lation, and model error, and propagate those features into
rainfall simulations. To begin to bridge this research gap
we evaluate the performance of an exponential-dispersion
rainfall simulation model (EDM, for details see Dunn,
2004) using a Bayesian Markov chain Monte Carlo
(MCMC) routine (Berry, 1996; Bolstad, 2004; Gelman
et al., 2004). A variety of modelling approaches and dis-
tributional forms have been explored for simulating rain-
fall including censored quantile regression (Friederichs
and Hense, 2007), generalized linear models (Furrer and
Katz, 2007) and Bernoulli-gamma and zero-inflated mod-
els (Haylock et al., 2006; Cannon, 2008; Fernandes et al.,
2009), each with some advantages and limitations in their
practical application. We suspect our evaluation of ben-
efits associated with explicitly quantifying uncertainty in
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the EDM and, subsequently, assessing EDM skill in light
of that uncertainty, will benefit a wide range of rainfall
simulation modelling applications, including (but not lim-
ited to) recent applications of the EDM (see, for example,
Hasan and Dunn, 2010; Hasan and Dunn, 2011a; Hasan
and Dunn, 2011b).

We demonstrate our proposed modelling framework by
applying the EDM to precipitation data over a series of
subbasins of the North American Laurentian Great Lakes
(for the remainder of this paper, we refer to precipitation
in terms of equivalent rainfall). We calibrate the model to
data from even-numbered years from 1969 to 2008, and
then compare the predictive distribution of daily rainfall
statistics representing rainfall magnitude and occurrence
to data from odd-numbered years.

2. Methods

2.1. The exponential dispersion model

The EDM (Dunn, 2004; Dunn and Smyth, 2005; Dunn
and Smyth, 2008; Hasan and Dunn, 2011a) expresses
daily rainfall (y, in mm) as a mixture of discrete (i.e.
zero) and continuous (i.e. non-zero) values through a
single probability density function. The model is based
on the assumption that the magnitude of individual
rainfall events within a day are well-represented by a
gamma Ga(−α, γ ) probability distribution with mean
= −αγ and variance = −αγ 2, and that the number
of rainfall events in any day has a Poisson Po(λ)

probability distribution with mean and variance λ. The
log-probability density function is:

log f (y|p, µ, φ) ={−λ for y = 0
−y/γ − λ − log y + log W(y, φ, p) for y > 0

(1)

where µ is mean daily rainfall (in mm), φ is a dispersion
parameter, and W is Wright’s generalized Bessel function
(Wright, 1933; Dunn, 2004) with power parameter p.
As indicated in the left-hand side of Equation 1, the
probability distribution is characterized by only three
parameters (p, µ, φ) which are related to Poisson and
Gamma distribution parameters λ, α and γ as follows
(Dunn, 2004; Dunn and Smyth, 2005):

λ = µ2−p

φ(2 − p)
(2)

α = (2 − p)/(1 − p)

γ = φ(p − 1)µp−1

2.2. Model calibration

We calibrate the EDM using subbasin-average daily rain-
fall values (calculated using a Thiessen polygon interpo-
lation approach as described in Croley and Hartmann,
1985; Quiroz et al., 2011) in even-numbered years from
1969 to 2008 within each of three subbasins (chosen
at random) of the Laurentian Great Lakes (Figure 1).
We divide the calibration data into 36 groups with each
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Figure 1. Delineation of the Laurentian Great Lakes drainage basin (grey shaded region) and identification of the three subbasins used in this
study.
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group comprised of data from one of the three sub-
basins and from 1 of the 12 months of the year. The first
data set, for example, includes 620 daily rainfall values,
each observed in the month of January during an even-
numbered year from 1969 to 2008 in Lake Superior sub-
basin 10 (1 subbasin × 20 months × 31 days per month).
Rainfall values from odd-numbered years are used for
model confirmation (for further discussion of model con-
firmation routines, see Reckhow and Chapra, 1983; Efron
and Tibshirani, 1993; Gronewold et al., 2009).

We estimate parameters of the EDM (i.e. p, µ, φ) by
drawing samples from the posterior probability distribu-
tion for each using a Bayesian MCMC approach. We
begin by defining the likelihood of the data given a set
of model parameters which, for �y ≡ (y1, . . . , yn), when
applied to the EDM (Equation 1), is L(�y|p, µ, φ) ≡∏n

i f (yi |p,µ, φ). We note that the product form for the
likelihood implicitly assumes that daily rainfall values
are independent. Previous research (see, for example,
Hosseini et al., 2011) suggests that daily rainfall values,
however, may be correlated. Our procedure for testing
this assumption is described in Section 2.3.1.

We then define a uniform prior distribution on the
EDM parameters, π(p, µ, φ), of the form:

π(p, µ, φ) ∝ 1, (where 1 < p < 2, µ > 0, φ ≥ 0).

(3)

We selected a non-informative prior so that the posterior
parameter distribution would be minimally influenced
by our a priori beliefs about the parameter values. We
recognize that our proposed non-informative prior may
prove problematic if little data are available to inform
the parameters. However, we found that sufficient data
are available to yield robust parameter inference with
any vague prior. More specifically, we found that, in our
study, model parameters are identifiable with as few as
20 observations, but not with 10. It is possible that studies
in other regions (such as those with drier climes) might
require alternative priors or larger data sets (or both) in
order to identify model parameters. For further discussion
on selection of prior probability distributions, see Press
(2003).

Following Bayes’ theorem, the posterior probability
distribution of the EDM parameters is then:

π(p,µ, φ|�y) ∝ L(�y|p,µ, φ) × π(p, µ, φ)

∝
n∏
i

f (yi |p,µ, φ). (4)

For each iteration in the MCMC chain, we calculate
the joint posterior probability density of the data and
candidate model parameters (i.e. Equation 4) using the
dtweedie function in the tweedie package (for
details, see Dunn and Smyth, 2005; Dunn and Smyth,
2008) in the statistical software program R (Ihaka and
Gentleman, 1996). Details of the MCMC algorithm are
included in the Appendix.

We ran the MCMC algorithm three times with different
initial parameter values, leading to three parallel ‘chains’
for each parameter. We ran all three chains for 20,000
iterations, and removed the first 10,000 as a ‘burn-
in’ period (Gelman et al., 2004). We then thinned the
remaining 10,000 iterations at a 1 : 10 ratio, leaving a total
of 3,000 simulated samples (1,000 per chain × 3 chains)
from the posterior distribution for each parameter. We
tested each MCMC run for convergence by calculating
the potential scale reduction factor R̂ and verifying that
it was close to 1.0 for all MCMC chains. For details, see
Gelman et al. (2004, p. 297).

2.3. Model confirmation
One goal of this paper is to assess the EDM as a potential
tool for documenting historical dynamics, and simulating
future dynamics (perhaps based on results of regional-
scale climate models). However, doing so presupposes
that the EDMs can accurately hindcast observed aggre-
gate rainfall patterns. Therefore, a confirmatory study is
necessary. While we recognize many statistics could be
used to evaluate model accuracy (for further discussion,
see Stow et al., 2009), we base our model confirmation
on an assessment of two metrics which correspond to
rainfall frequency and magnitude, respectively.

2.3.1. Rainfall frequency

We begin by calculating the predictive distribution of
the number of days with no measurable rainfall (zi,j )
in month i (i ∈ 1, . . ., 12) and subbasin j (j ∈ 1, . . ., 3)
by following the common assumption that zi,j has a
binomial Bi(zi,j |ni, θi,j ) probability distribution with ni

equal to the total number of days in month i, and θi,j , the
posterior probability of no measurable rainfall in month
i and subbasin j . Following Dunn (2004) and equation
1, θ is equal to exp(−λ). The predictive distribution for
zi,j given a set of observed daily rainfall values �yi,j in
even-numbered years from 1969 to 2008 is then:

p(zi,j |�yi,j , ni) =
∫ 1

0

(
ni

zi,j

)
θ

zi,j

i,j ×

(1 − θi,j )
ni−zi,j π(θi,j |�yi,j )dθi,j (5)

where π(θi,j |�yi,j ), the posterior probability distribu-
tion of θi,j given �yi,j (based on m MCMC samples
θi,j,1, . . . , θi,j,m) is:

π(θi,j |�yi,j ) = 1

m

m∑
k=1

δ(θi,j,k − θi,j ) (6)

and δ(. . .) is the Dirac delta function with unit probability
mass. The predictive probability distribution of zi,j is
then:

p(zi,j |�yi,j , ni) = 1

m

(
ni

zi,j

) m∑
k=1

[
θ

zi,j

i,j,k(1 − θi,j,k)
ni−zi,j

]

(7)

= 1

m

m∑
k=1

dbinom(zi,j |ni, θi,j,k) (8)
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where dbinom is the binomial probability distribution
density function in the statistical software program R. We
then calculate the 95% prediction set for the number of
days in a month with no measurable precipitation. Here,
following Gronewold and Wolpert (2008), we define a
95% prediction set as the set of ‘highest probability’
integer values between 0 and ni (the number of days in
month i) for which the cumulative probability mass is at
least 0.95. For illustrative examples of 95% prediction
sets, see Figures 3 and 4 in Gronewold and Wolpert
(2008) and Figures 5 and 6 in Gronewold et al. (2011b).
We then calculate the corresponding 95% prediction
intervals for the fraction of days in a month with no
measurable precipitation by dividing the bounds of the
95% set by the respective number of days in each month.

To test our assumption of conditional independence of
daily rainfall values, we calculate the predictive distri-
bution for two quantities; the number of days with no
measurable rainfall in a given month given that the pre-
vious day had no measurable rainfall (which we identify
as z0), and the number of days with no measurable rain-
fall in a given month given that the previous day had
measurable rainfall (which we refer to as z′). These two
predictive distributions can be expressed (following the
logic of Equations 5 through 8) as (for simplicity, we
have removed i and j from Equations 9 and 10):

p(z0|�y, n0) = 1

m

m∑
k=1

dbinom(z0|n0, θk) (9)

and,

p(z′|�y, n′) = 1

m

m∑
k=1

dbinom(z′|n′, θk) (10)

where n0 is the total number of days in a given month
preceded by a day with no rainfall, and n′ is the total
number of days in a given month preceded by a day with
rainfall. Following the procedure described above, we
then calculate the 95% prediction set for both z0 and z′,
and compare both to observed values from the calibration
and confirmation periods.

2.3.2. Rainfall magnitude

To assess the EDM’s potential for simulating daily rain-
fall magnitude, we calculate the probability distribution
of measurable daily rainfall (i.e. daily rainfall amounts
greater than zero) for each subbasin-month combination
and compare it to the observed probability distribution
of measurable daily rainfall. We do this by entering all
3000 MCMC samples from each EDM parameter pos-
terior distribution into the rtweedie function in the
tweedie package (Dunn and Smyth, 2005; Dunn and
Smyth, 2008), an approach that generates (for one iter-
ation of the rtweedie function) 3,000 samples from
the posterior predictive distribution of y. We note here
that this approach is analogous to simulating a 3,000-day
long time series of daily rainfall values.

To fully capture intrinsic variability in the probability
distribution of daily rainfall values (due, in part, to a
finite number of samples from the EDM parameter joint
posterior distribution), we repeat this procedure 10,000
times, excluding from the final set of simulated daily
rainfall values those which equal zero (a schematic, and
a slightly more detailed description of this procedure, are
included in Figure 8 and the Appendix, respectively). We
then calculate the quantiles of the observed measurable
rainfall times series (separately for both calibration and
confirmation periods) and the quantiles from each of
the 10,000 sets of simulated rainfall values. Finally,
we compare each observed rainfall value to the set
of simulated rainfall values from the corresponding
quantile of the simulated sets. Our approach differs from
conventional quantile–quantile comparisons because it
explicitly depicts uncertainty and (unlike comparisons
of quantile residuals) identifies where potential sources
of bias are likely to arise from the simulated time
series.

3. Results

3.1. Model calibration

Our model calibration results indicate several patterns
in the EDM parameters both within and across each of
the subbasins (Figure 2). For example, the 95% highest
posterior density (HPD) regions (Figure 2) suggest that
the EDM power parameter, p, varies throughout the
year when fit to the Lake Superior and Lake Michigan
subbasin data, but that it is relatively consistent and
somewhat higher throughout the year when fit to the
Lake Erie subbasin data. The relatively high values and
low variability of the power parameter for the Lake
Erie watershed likely reflect a combination of empirical
evidence (Figure 4) indicating that the fraction of days
with no rainfall in the Lake Erie watershed is relatively
consistent throughout the year, and that the mean daily
rainfall is also relatively high and relatively consistent
for the Lake Erie watershed as well. For a more rigorous
assessment of EDM power parameter dynamics, see
Dunn (2004) and Hasan and Dunn (2011a).

We also find that the expected value of daily rain-
fall µ follows a seasonal pattern with peak values for
Lake Superior subbasin 10 in April, for Lake Michigan
subbasin 3 in September, and for Lake Erie subbasin
8 in June. We could assess mean daily rainfall values
(i.e. calculate a value for µ) through an empirical data
assessment as well, however assessing the posterior dis-
tribution of µ in a Bayesian framework explicitly prop-
agates data variability through the posterior distribution
into uncertainty in rainfall forecasts. Finally, we find that
the dispersion parameter, φ, varies from season to sea-
son, although the pattern differs among subbasins (bottom
row, Figure 2).

Our parameter correlation assessment indicates that
the expected value of daily rainfall µ is independent of
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Figure 2. Model calibration results, including posterior distribution 95% highest posterior density (HPD) regions (vertical lines) for each
combination of EDM parameter (rows) and subbasin (columns). Calibration results are based on conditioning the EDM to rainfall data in

even-numbered years from 1969 to 2008.

both the dispersion parameter φ and power parameter p,
based on the orientation of the marginal posterior density
contours in the {µ,p}- and {µ, φ}-planes (middle left
and bottom centre panels in Figure 3, respectively). We
find, however, that φ and p are positively correlated
(middle panel Figure 3). The patterns in Figure 3 are
based on calibrating the EDM to January rainfall data in
Lake Superior subbasin 10, however we find (results not
shown) they represent parameter relationships when the
EDM is calibrated using rainfall data from other months
and other subbasins.

3.2. Model confirmation

3.2.1. Rainfall frequency

A comparison between the observed fraction of days
in a given month with no measurable rainfall and the
predictive distribution indicates that the EDM slightly
underestimates the probability of zero rainfall (Figure 4).
The 95% prediction regions contain approximately 84%
of the observations from the calibration period and 82%
from the confirmation period across all subbasin–month
combinations. This proportion does not vary systemat-
ically within subbasins across months, nor is there a
systematic tendency to miss either high or low extreme
values. We recognize that this incomplete coverage could
occur for several reasons, including temporal depen-
dence in the EDM, as well as the use of Thiessen-
weighting to synthesize gauge-based observations. Future
work will focus on differentiating these and other
possibilities.

Our results also suggest that the EDM does not fully
represent the temporal dependence of daily rainfall val-
ues. For example, we found that the 95% prediction
interval for z0 (using EDM parameter values condi-
tioned under an assumption of conditional independence)
included 71% of observations from the calibration period,
and 69% of observations from the confirmation period.
Similarly, we found that the 95% prediction interval for z′
included 72% and 74% of the observations from the cal-
ibration and confirmation periods, respectively. The rel-
atively lower skill of the EDM when forecasting rainfall
values conditioned on their antecedent conditions implies
that p(z|�y, n) �= p(z0|�y, n0) �= p(z′|�y, n′), and suggests
that the EDM in its current form is more suitable for mod-
elling monthly precipitation values (assuming less tempo-
ral dependence when aggregating from daily to monthly
scales) or that it may need to be modified if applied
to daily rainfall values. We find that previous applica-
tions of the EDM (Dunn, 2004; Dunn and Smyth, 2005;
Hasan and Dunn, 2011a), which progressively gravitate
towards a focus on monthly rainfall data, do not explic-
itly acknowledge (through, for example, the type of skill
assessment we present here) nor emphasize (perhaps in
qualitative terms) this important distinction. One possi-
bility to incorporate the dependence structure would be to
use the Tweedie distribution in a generalized linear mod-
elling framework (Hasan and Dunn, 2011a), incorporat-
ing covariates such as lags in the observed daily rainfall.

3.2.2. Rainfall magnitude

Generally, the EDM provides a reasonable reproduction
of the probability distribution of measurable daily rainfall
for each subbasin–month combination, indicated by the
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Figure 5. Comparison between observed and simulated rainfall values over Lake Superior subbasin 10 from the same quantile. Vertical lines
indicate the range of simulated values from a particular quantile generated using all MCMC samples from the EDM joint parameter posterior
distribution. Blue lines represent calibration data, and red lines represent confirmation data. The 1 : 1 line (black) is shown for reference. Axes

are presented at square-root scale to improve clarity.

fact that most of the vertical blue (calibration period)
and red (confirmation period) lines in Figures 5 through
7 intersect the 1 : 1 line. Each vertical line indicates the
range of simulated daily rainfall values for each quantile
from the corresponding set of observed non-zero daily
rainfall values. Put differently, the location of each verti-
cal line along the x-axis in each panel corresponds to an
observed daily rainfall value. The corresponding height of
each vertical line reflects the uncertainty in the predicted
daily rainfall value from the quantile of the observed
daily rainfall value. Within a particular panel in Figures 5
through 7, relatively short vertical lines that intersect the

1 : 1 line indicate a predictive distribution for daily rain-
fall (for the subbasin–month combination represented by
that panel) which is similar to the observed rainfall prob-
ability distribution. Wide vertical lines in any given panel
that intersect the 1 : 1 line indicate that there is signifi-
cant uncertainty in a particular quantile of the predictive
distribution, but that the observed rainfall value from the
same quantile is within the predicted range of values.

While the EDM appears to reproduce the general fea-
tures of the probability distribution of daily rainfall, we
observe, as expected, significant variability in the EDM-
derived upper quantiles of the daily rainfall distribution.

Published in 2012 by John Wiley & Sons Ltd. Int. J. Climatol. (2012)
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Figure 6. Comparison between observed and simulated rainfall values over Lake Michigan subbasin 3 from the same quantile. Vertical lines
indicate the range of simulated values from a particular quantile generated using all MCMC samples from the EDM joint parameter posterior
distribution. Blue lines represent calibration data, and red lines represent confirmation data. The 1 : 1 line (black) is shown for reference. Axes

are presented at square-root scale to improve clarity.

For example, the upper left-hand panel of Figure 5 indi-
cates that our calibrated model (for January in Lake Supe-
rior subbasin 10) simulates extreme daily rainfall ranging
between roughly 28 and 135 mm (as indicated by the
extent of the right-most red and blue vertical lines) while
the corresponding rainfall values from the same quantile
in the observed data sets were about 73 mm (calibration
years) and 41 mm (validation years).

4. Discussion and conclusions

This paper assesses the EDM in a Bayesian MCMC
framework for simulating daily rainfall in three sub-
basins of the North American Laurentian Great Lakes.

We have shown that, within this framework, explic-
itly acknowledging variability in daily rainfall time
series data through uncertainty and correlation in the
EDM parameter joint posterior probability distribution
(Figure 3) leads to appropriate representation of uncer-
tainty in simulated daily rainfall magnitude and occur-
rence. By ‘appropriate representation of uncertainty’ we
mean that the uncertainty expressed in EDM forecasts
neither greatly exceeds, nor significantly underestimates
the variability observed in independent rainfall time
series. We base this assessment on two measures of model
skill; (1) the fraction of 95% prediction intervals which
include the observed fraction of days with no measurable
rainfall in an independent confirmation data set, and (2)
a quantile-based comparison of simulated and observed

Published in 2012 by John Wiley & Sons Ltd. Int. J. Climatol. (2012)
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Figure 7. Comparison between observed and simulated rainfall values over Lake Erie subbasin 8 from the same quantile. Vertical lines indicate
the range of simulated values from a particular quantile generated using all MCMC samples from the EDM joint parameter posterior distribution.
Blue lines represent calibration data, and red lines represent confirmation data. The 1 : 1 line (black) is shown for reference. Axes are presented

at square-root scale to improve clarity.

daily rainfall time series. Other metrics and assessment
techniques could be used, including total monthly or
annual rainfall amounts, coupled, perhaps, with an anal-
ysis of the histograms of Bayesian posterior predictive
p-values for these metrics. For a detailed description of
these and similar assessment metrics, including probabil-
ity integral transform and verification rank histograms,
see Raftery et al. (2005); Elmore (2005); Gronewold
et al. (2009). We plan to explore these alternatives in
future applications of the EDM (including, for example,
those which support probabilistic approaches to resource

management, as described in Gronewold and Borsuk,
2009).

In addition to providing a robust basis for quantify-
ing uncertainty in EDM parameters and forecasts, our
Bayesian MCMC calibration approach provides a con-
venient alternative to conventional model calibration and
forecasting schemes. For example, stochastic rainfall sim-
ulation models are often calibrated through optimization
algorithms that yield parameter point estimates and pro-
duce deterministic comparisons between simulated and
observed time series metrics (which, in some cases,
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include procedures for ‘matching’ observed and simu-
lated statistics using parameter perturbations, as described
in Burton et al., 2008). Our approach provides an alter-
native that explicitly acknowledges uncertainty and vari-
ability in rainfall dynamics. In doing so, our application
of the EDM allows us to choose between either reflecting
the same degree of variability observed in historic time
series in future simulations, or modifying the location and
scale of EDM parameters (based, perhaps, on regional cli-
mate model outputs). The latter approach acknowledges
and meets the growing need for models which reflect
changing conditions over time (Milly et al., 2008) and
provides an alternative to scenario-weighting approaches
(for similar applications and further discussion, see (Lof-
gren et al., 2002). Furthermore, we recognize that while
we have not rigorously tested our assumption of decadal
stationarity in this particular application of the EDM,
the rainfall data from 1969 through 2008 in the three
subbasins studied does not appear to demonstrate a sig-
nificant trend over this 40 year period (Figure 4), with
the exception of the frequency of daily rainfall events in
September in the Lake Superior Tahquamenon watershed
(subbasin 10), which appears to be decreasing (i.e. the
fraction of days with no measurable rainfall is increas-
ing). Regardless, our application of the EDM can easily
be transferred to a more comprehensive regional or hier-
archical analysis of precipitation patterns within the Great
Lakes basin, and we view this as an area for future
research. A regional frequency analysis, in particular,
could potentially reduce some of the variability in our
estimates (Figures 5–7) of extreme rainfall quantiles (for
further discussion, see Trefry et al., 2005; Ribatet et al.,
2007).

Our study also underscores pending difficulties associ-
ated with downscaling regional climate change scenarios
into local scale dynamics, particularly in regions (such
as the Laurentian Great Lakes) with significant local-
scale spatial climate variability. For example, the Lake
Superior Tahquamenon watershed (subbasin 10) and the
Lake Michigan Sturgeon and Manistique watershed (sub-
basin 3) are within 50 miles (roughly 80 kilometers) of
each other (Figure 1), yet the rainfall dynamics in each
differ (Figure 4), due in part to different weather and
wind patterns over and adjacent to Lake Superior. By
calibrating the EDM to local scale climate data, our
approach serves as an ideal cornerstone for a future
coupled RCM-EDM which propagates regional climate
patterns into local-scale rainfall (and other weather com-
ponent) dynamics.

In this process, we have identified three areas for
improvement. First, we recognize that EDM performance
could be improved through an analysis of potential
thresholds for ‘measurable’ rainfall amounts (Burton
et al., 2008) and corrections for potential bias these
thresholds might introduce. Second, we acknowledge
that temporal dependencies in daily rainfall data are not
routinely captured by the EDM, and therefore the EDM is
likely most suitable for application to monthly time series
data. We underscore here how our assessment provides a

robust quantitative basis for making this distinction, and
that future research might focus on supplementing the
EDM with algorithms for expressing autocorrelation on
a daily time scale. Third, the daily rainfall values we used
here are, in fact, averaged (based on multiple individual
rain gauges) over each subbasin, an approach which
could overestimate the frequency and underestimate the
intensity of daily rainfall dynamics (Bates et al., 1998).
We intend, in future research, to calibrate the EDM
to individual rain gauge data and then combine the
EDM parameters using a Bayesian model averaging or
hierarchical approach (Raftery et al., 2005; Gelman and
Hill, 2007; Ancelet et al., 2010).
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A1. Appendix

A1.1. Markov chain Monte Carlo (MCMC)
algorithm

The algorithm used in this paper is a three-parameter
Metropolis-Hastings algorithm, which is a type of
Markov chain Monte Carlo (MCMC) algorithm used
to generate random samples from intractable probability
densities. The algorithm is implemented iteratively with
k being the current iteration, and the parameter set (or
‘state’) for a particular iteration is defined as {pk, µk, φk}.
A trial state {p′, µ′, φ′} is generated using a trivariate
normal distribution centred at the current state:

(p′, µ′, φ′) ∼ N3 ({pk, µk, φk}, �)

where � is a covariance matrix.
The likelihood and prior distribution are evaluated at

this trial state. Alternatively, one can change a random
subset of the parameters at each iteration rather than the
whole set. The trial state is accepted with probability

Pr{p′, µ′, φ′ → pk+1, µk+1, φk+1}
= min

(
1,

L(�y|p′, µ′, φ′) × π(p′, µ′, φ′)
L(�y|pk, µk, φk) × π(pk, µk, φk)

)

and if the trial state is not accepted, the current state
{pk, µk, φk} is retained at iteration k + 1.

The set of states over all iterations constitutes a
‘chain’. The acceptance–rejection step ensures that the
chain will eventually converge to the posterior distri-
bution, π(p,µ, φ|�y). Convergence was checked using
the CODA package in R, and we found no evidence of
non-convergence.
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Figure 8. Schematic representation of procedure for simulating the probability distribution of measurable daily rainfall amounts (see Appendix
A2 for details).

Generally, one wants the Metropolis-Hastings algo-
rithm to accept between 20% and 50% of the trial states.
Too many or too few mean the chain is not sampling
the posterior efficiently. This fraction can be tuned by
trying different values of �. After some experimenta-
tion, we found that a diagonal covariance with � =
diag(0.002, 0.07, 0.07) yields a 32% acceptance fraction.

A2. Simulating the probability distribution of
measurable daily rainfall

Figure 8 provides a schematic representation of our pro-
cedure for simulating the probability distribution of the
magnitude of measurable daily rainfall events. After sim-
ulating 3000 MCMC samples from the posterior proba-
bility distribution for each EDM parameter (µ,p, φ) for
a given set of observed daily rainfall values −→y for a
particular month and subbasin (as described in the pre-
vious appendix and in Section 2.2, and represented by
the upper-half of Figure 8), we systematically pass each
triplet of parameter values from the MCMC chain to
the rtweedie package (Dunn and Smyth, 2005, 2008).
We then use the rtweedie package to simulate 10,000
daily rainfall values from an EDM for each triplet. For
example, in Figure 8, a blue vertical line passes through
the first value of µ, p, and φ in each MCMC chain
(represented as µ1, p1, and φ1) which are passed to the
rtweedie package to simulate 10,000 rainfall values
for that particular triplet. The 10,000 simulated rainfall
amounts using µ1, p1, and φ1 are represented by the
vector y1,1, y1,2, . . . , y1,10 000 (highlighted in blue) in the
array in the bottom-right of Figure 8. We repeat this pro-
cedure for the second triplet of parameter values (high-
lighted in red in Figure 8) and continue up to the final
(i.e. 3,000th) value in each MCMC chain (highlighted in

green in Figure 8). The set of simulated, non-zero values
from the resulting array (bottom-right corner of Figure 8)
constitutes our approximated probability distribution of
measurable daily rainfall values for the given month and
subbasin.
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